Carroll County Water Resource Coordination Council

Hampstead \* Manchester \* Mt. Airy \* New Windsor Carroll County Health Department



\* Sykesville \* Taneytown \* Union Bridge \* Westminster Carroll County Government

#### WRCC Meeting Summary July 26, 2023

#### Attendees:

<u>CC LRM</u>: □Brenda Dinne □Glenn Edwards ⊠Chris Heyn, Director ⊠Claire Hirt □Mary Lane □Byron Madigan □Kelly Martin ⊠Denise Mathias ⊠Zach Neal ⊠Janet O'Meara □Ed Singer □Price Wagoner <u>Health Department</u>: ⊠Richard Brace

#### <u>CCG Others</u>:

⊠Andy Watcher, CC DPW ⊠Lydia Rogers, CC M&B ⊠Bryan Bokey, CC DPW

<u>Guest Speakers</u>: ⊠Phoebe Aron, Hazen ⊠Jeremy Hise, Hazen

#### <u>Others</u>:

☑ Joan White, City of Baltimore
 ☑ Paul Sayan, City of Baltimore
 ☑ Bill Felter, City of Baltimore

#### 1. Opening Statement

#### Chair – Kevin Hann

Mr. Hann opened the meeting at 2:30 PM. He introduced Jim Roark, Acting Town Manager for Hampstead. All attendees introduced themselves.

#### Vice Chair – Jim Wieprecht

None.

#### 2. Approval of Meeting Summary – June 28, 2023

Approval of the June meeting summary was discussed. No changes were made.

**<u>APPROVAL OF MINUTES</u>**: Motion was made by Alex Perricone and seconded by Dick Swanson to approve the June 28, 2023, meeting summary as written. Motion carried.

#### 3. PFAS Implications for Municipalities – Phoebe Aron and Jeremy Hise, Hazen

- Phoebe Aron and Jeremy Hise with Hazen, the firm working on the Water Resources Element, presented an overview of the implications of PFAS (per-and polyfluoroalkyl substances) for the municipalities.
- EPA's proposed rule will set the maximum contaminant levels for PFOA and PFOS, the most common PFAS compounds, at 4 parts per trillion. The rule is expected to be final in early 2024.

- Since most of the water systems in the county tend to regularly rely on a high percentage of available capacity, taking any sources offline will impact available capacity.
- Hazen identified potential PFAS sources, which could include fire training facilities, fire stations, airports, landfills, and others. If a buffer were placed around these sources, some municipal wells would be considered at higher risk for PFAS contamination.
- PFAS treatment options in drinking water are limited, but there are opportunities for optimized implementation. Mitigation alternatives include well management, treatment at water treatment plants, and treatment at the source. Hazen discussed approaches for evaluating management and treatment options. The primary options include granular activated carbon (GAC), ion exchange, and reverse osmosis (RO)/nanofiltration. Hazen suggested benchmarking treatment conditions.
- Hazen also discussed how to determine cost of compliance with EPA's new rule and the associated timeline. Choice of treatment approach and costs vary depending on the option and the individual system. Hazen shared information on Peoples Water in Florida as a case study.

#### Reference/Attachment: PFAS Workshop

• Carroll County WRCC: PFAS Implications for Municipalities

#### 4. Water Resources Element (WRE 2024) Update – Chris Heyn

- <u>Task 1.2: Automation of Portions of Buildable Land Inventory model</u>: Completion is anticipated for early September.
- <u>Task 2: Groundwater Allocability</u>: Hazen is working on technical memo and will provide a revise document soon.
- <u>Task 3: Emerging Contaminants</u>: Hazen will take any feedback provided at WRCC meeting regarding PFAS topic and incorporate to technical memo. The technical memo is expected in early August.
- <u>Task 4: MDE TIPP Spreadsheet Comparison</u>: Hazen is comparing the results of the MapShed model used previously for the TMDL implementation plans with the results of one of the watersheds using MDE's TMDL Implementation Progress and Planning tool. A technical memo will be provided in August.
- <u>Task 5: Climate Change Impacts</u>: Hazen is working on evaluating climate change impacts as they relate to water resources. A draft technical memo is due in August.
- <u>Task 6: Update 2010 WRE Supporting Documents</u>: Hazen will update the supporting documents used to prepare the 2010 WRE. This includes the capacity and demand information used to identify needs, challenges, and recommendations regarding shorter-term and long-term water supply and wastewater. Brenda Dinne is meeting with each municipality/system to review the completed workbooks, which now include demand information, prior to providing them to Hazen. The name of the workbooks has been changed to "Capacity & Demand" rather than "Capacity Management Plan" to help avoid confusion regarding the purpose of these workbooks. They are for planning purposes only and not intended to be submitted to MDE.

*Reference/Attachment:* 

• N/A

#### 5. Municipal Stormwater Projects Update – Janet O'Meara

Janet O'Meara provided an update on the municipal stormwater restoration projects. *Reference/Attachment:* 

• Municipal Project Status

#### 6. Other

- <u>Water Conservation</u>: Mr. Swanson shared that the Mayor of Mt. Airy is now posting videos on Facebook about water conservation.
- <u>20SW Facilities</u>: Ms. Hirt reminded those who need to apply for a 20SW permit that the Notice of Intent (NOI) is due at the end of the month. If the Stormwater Pollution Prevention Plan (SWPPP) is not completed, it can be submitted separately.
- <u>2022 NPDES Annual Report</u>: Ms. O'Meara stated that MDE's comments on the 2022 annual report were positive.
- <u>2023 NPDES Annual Report</u>: Ms. Hirt indicated emails will go out next week or two for updating information.

#### 7. Adjournment

The meeting adjourned at 3:56 PM. The next monthly meeting is scheduled for Wednesday, August 23, 2023, at 2:30 PM.

**MEETING ADJOURNMENT**: Motion was made by Mayor Perry Jones and seconded by Alex Perricone to adjourn the July 26, 2023, meeting. Motion carried.

#### Upcoming Meetings:

📋 Regular Monthly Meeting – Wednesday, August 23, 2023

### MUNICIPAL STORMWATER PROJECT STATUS July 26, 2023

#### **FUTURE PROJECTS:**

**Michael's Property (Hampstead)** – Project is on hold until Town has obtained approval from property owners to move forward.

**Meadow Ridge Basin 2 (Westminster)** – Retrofit of existing facility to provide water quality through a surface sand filter. This site is adjacent to the pump station at the edge of the City limits. The County has begun sending out RFPs under the new term contract. We are expecting to send this one out within the next few months.

**Hampstead Valley 2/3 (Hampstead)** – Hampstead Valley facilities 2 and 3 will be retrofit as a stream restoration project to decommission Sycamore Drive as a roadway embankment. The design will include a stream restoration beginning immediately downstream of the proposed Hampstead Valley 1 facility and continue to Sycamore Drive.

#### **CONCEPT DESIGN:**

**Hampstead Valley 1 (Hampstead)** – Retrofit of existing detention basin to a surface sand filter. Site is located just south of Lower Beckleysville Road near a production well. CLSI is currently working on resubmitting a concept plan of a triple facility design. New Dam Safety requirements have gone into effect. These requirements include additional modeling, which may affect the current concept design.

**Manchester East (Manchester)** – We are looking into opportunities for a new stormwater facility north of Manchester Valley High School, adjacent to the pump station. We have awarded this project to CLSI. They are getting started with a design for a new surface sand filter and potential for drainage improvement at the upstream end of the stormdrain network.

**New Windsor Wetland (New Windsor)**- A new wetland facility is proposed adjacent to the Maryland Midland Railroad tracks and Dickenson Run. The proposed improvements include removing the existing inlet adjacent to the intersection of Water St and Church St, replacing it

with a diversion structure that will route the 1-year storm discharges to the proposed wetland facility. We are working through the design with the engineer for a structure to balance the facility on both sides of the sewer main. A concept plan was submitted July 12<sup>th</sup> for review.

**Public Safety Training Center (Westminster Well)**- A retrofit for the Public Safety Training Center pond is in progress for the facility design and PFAS remediation. WRA is finalizing the concept plan for the surface sand filter this week. Tetra Tech will provide guidance for the PFAS remediation. A concept plan was submitted on July 13<sup>th</sup> for review.

#### **PRELIMINARY DESIGN:**

**Hampstead Valley 4 (Hampstead)** – A new surface sand filter and stream restoration project is proposed between Century Street and Downhill Trail. Culverts at Downhill Trail require realignment into the HOA parcel for dam breach approval. A preliminary submittal was reviewed by stormwater and sent back with comment.

**Roberts Field Wet Facility (Hampstead)** – Retrofit of wet pond to new hybrid wet pond/submerged gravel wetland. The recent concept submittal was approved with comments from the Town and Stormwater Management. Wallace Montgomery & Associates (WMA) is beginning the preliminary phase of design.

#### **FINAL DESIGN:**

#### **CONSTRUCTION:**

North Carroll Library (Hampstead) – As-built has been approved.

#### **PLANNING PROJECTS:**

Little Pipe Creek Restoration Opportunities – The County has executed the grant agreement with the National Fish and Wildlife Foundation (NFWF). CWP has developed an outline for identifying priority restoration areas, this is currently being reviewed internally. CWP and County staff went out together for an assessment of Little Pipe watershed in late June.

#### **TREE PLANTING PROJECTS:**

All the municipal plantings have completed their maintenance period and are now the responsibility of the municipalities. Please make sure that these areas are being mowed at least three (3) times per season.







# **Carroll County WRCC: PFAS Implications for Municipalities**

July 26, 2023

## Agenda

- Introductions
- PFAS Regulatory Overview
- Potential PFAS Implications
- PFAS Mitigation and Treatment
- Determining Cost of Compliance and Case Study
- Q&A



# **Regulatory Review**

## **Proposed PFAS Rule**

The proposed rule set MCLGs and MCLs for PFOA and PFOS, and took a risk-based approach to regulating 4 additional PFAS compounds:

- PFHxS
- PFBS
- GenX

| Compound                    | Proposed MCLG  | Proposed MCL<br>(enforceable levels)               |  |  |  |
|-----------------------------|----------------|----------------------------------------------------|--|--|--|
| PFOA                        | Zero           | 4.0 parts per trillion<br>(also expressed as ng/L) |  |  |  |
| PFOS                        | Zero           | 4.0 ppt                                            |  |  |  |
| PFNA                        |                |                                                    |  |  |  |
| PFHxS                       | 1.0 (unitless) | 1.0 (unitless)                                     |  |  |  |
| PFBS                        | Hazard Index   | Hazard Index                                       |  |  |  |
| HFPO-DA<br>(GenX Chemicals) |                |                                                    |  |  |  |

$$PFAS \ Hazard \ Index \ MCL = \left[\frac{HFPO - DA_{water}}{10\frac{ng}{L}}\right] + \left[\frac{PFBS_{water}}{2,000\frac{ng}{L}}\right] + \left[\frac{PFNA_{water}}{10\frac{ng}{L}}\right] + \left[\frac{PFHxS_{water}}{9\frac{ng}{L}}\right]$$

## What is the Regulation Timeline?

| Timeline Considerations for U.S. EPA Actions on PFAS                                                   |     | 2022 |   | 2023 |   |   |   | 2024 |   |   | 2025 |     |      | 2026 |       | 6        | 2027 |      |     |    | 2028 |     |    | 2029 |     |   |     |   |
|--------------------------------------------------------------------------------------------------------|-----|------|---|------|---|---|---|------|---|---|------|-----|------|------|-------|----------|------|------|-----|----|------|-----|----|------|-----|---|-----|---|
|                                                                                                        | Qtr | 1    | 2 | 3    | 4 | 1 | 2 | 3 4  | 1 | 2 | 3    | 4   | 1    | 2    | 3 4   | 4   1    | 2    | 2 3  | 4   | 1  | 2    | 3   | 4  | 1 2  | 3   | 4 | 1 2 | 2 |
| Lifetime Health Advisories Announced for PFOA, PFOS, GenX, PFBS                                        | 3   |      |   |      |   |   |   |      |   |   |      |     |      |      |       |          |      |      |     |    |      |     |    |      |     |   |     |   |
| UCMR5 Sampling for 29 PFAS                                                                             |     |      |   |      |   |   |   |      |   |   |      |     |      |      |       |          |      |      |     |    |      |     |    |      |     |   |     |   |
| EPA Regulation for PFOA and PFOS                                                                       |     |      |   |      |   |   |   |      |   |   |      |     |      |      |       |          |      |      |     |    |      |     |    |      |     |   |     |   |
| Proposed rule announced                                                                                |     |      |   |      |   |   |   |      |   |   |      |     |      |      |       |          |      |      |     |    |      |     |    |      |     |   |     |   |
| Final rule expected                                                                                    |     |      |   |      |   |   |   |      |   |   | -    | - P | Pote | ent  | ial I | fina<br> | aliz | zati | ion | wi | ind  | low | ex | ten  | sio | n |     |   |
| Systems have 3 years to implement changes.<br>An additional 2 years are possible for capital upgrades. |     |      |   |      |   |   |   |      |   |   |      |     |      |      |       |          |      |      |     |    |      |     |    |      |     |   |     |   |

# **Implications for Municipalities**

## Water Demand and Capacity

• Water supply capacity exceeds average daily demand for all County municipalities, but some regularly rely on all or nearly all the available capacity.



## Water Demand and Capacity

Percentage of Capacity Used

• Water supply capacity exceeds average daily demand for all County municipalities, but some regularly rely on all or nearly all the available capacity.



## Water Demand and Capacity

**Projected Percentage of Capacity Used** 

• The percentage of water capacity used is expected to increase for most County municipalities over the next decade.



## **Potential PFAS Sources**

# Potential PFAS sources in the County include:

- Fire training facilities
- Fire stations
- Airports
- Military sites and installations
- Landfills
- Manufacturing facilities
- Wastewater treatment plants





**Proximity of Potential PFAS Sources to Production Wells** 

- Spatial buffer analysis to identify production wells that are more likely that others to have PFAS issues
- Buffers increase from 500 feet radius to more than 2,500 feet radius
- Results can help prioritize monitoring and identify wells and municipalities that may be affected by PFAS contamination





500 ft radius

| Municipality    | Well Name    | PFAS Source<br>Type |
|-----------------|--------------|---------------------|
| Pleasant Valley | Fire Station | Fire Station        |
| Hampstead       | PW-26        | Wastewater          |
| Union Bridge    | PW-3         | Fire Station        |





1,000 ft radius

| Municipality    | Well Name      | PFAS Source<br>Type         |
|-----------------|----------------|-----------------------------|
| Union Bridge    | PW-1           | Fire Station,<br>Wastewater |
| Pleasant Valley | PW-1A          | Wastewater                  |
| Hampstead       | PW-23          | Wastewater                  |
| Union Bridge    | PW-3           | Wastewater                  |
| Mount Airy      | PW-6           | Wastewater                  |
| Westminster     | PW-8 (Vo-Tech) | Fire Training<br>Facility   |





1,500 ft radius

| Municipality            | Well Name                | PFAS Source<br>Type                                                       |
|-------------------------|--------------------------|---------------------------------------------------------------------------|
| Westminster             | Koontz<br>Creamery       | Fire Station                                                              |
| Hampstead               | PW-24                    | Fire Station,<br>Manufacturing                                            |
| Hampstead               | PW-25                    | Fire Station,<br>Manufacturing                                            |
| Hampstead               | PW-27                    | Wastewater                                                                |
| Westminster             | PW-4 (Air Bus.<br>Cent.) | Airport                                                                   |
| New Windsor             | Roops Meadow<br>Spring   | Manufacturing                                                             |
| Produc                  | tion Wells PFAS          | Source                                                                    |
|                         | <b></b> A                | irport                                                                    |
| • We                    | ell Online               | ire Station                                                               |
| • Off                   | Fine due to PFAS         | ire Training Facility                                                     |
| Produc<br>• We<br>• Off | tion Wells PFAS          | Source<br>irport<br>ire Station<br>ire Training Facility<br>lanufacturing |

Wastewater



## **Potential PFAS Implications on Growth and Development**

**Known PFAS Contamination** 

• Three wells currently offline due to PFAS are close to fire stations or fire training facilities

| Municipality | Well Name      | Potential PFAS Source  | Buffer Distance (ft) |
|--------------|----------------|------------------------|----------------------|
| Hampstead    | PW-24          | Fire Station           | 1,500                |
| Hampstead    | PW-25          | Fire Station           | 1,500                |
| Westminster  | PW-8 (Vo-Tech) | Fire Training Facility | 1,000                |



## **Potential PFAS Implications on Growth and Development**

**Potential PFAS Contamination from Fire Stations** 

| Municipality    | Well Name                             | Buffer Distance (ft) | % of Average Daily Use | Notes                                                 |
|-----------------|---------------------------------------|----------------------|------------------------|-------------------------------------------------------|
| Hampstead       | PW-28, PW-29                          | 2,500                | 45%                    | Determined from permitted daily use                   |
|                 | Holland Dr. Well                      | 2,500                | 5%                     |                                                       |
| Manchester      | Walnut St. Spring                     | 2,500                | 15%                    | Determined from Walnut St. spring<br>storage capacity |
|                 | Walnut St. Well                       | 2,500                | 2%                     |                                                       |
| Mount Airy      | PW-5                                  | 2,000                | 19%                    | Well Field 5 & 6                                      |
| New Windsor     | Roops Meadow Spring                   | 2,000                | 80%                    | Dennings Well, Main Spring, Roops<br>Meadow Spring    |
| Pleasant Valley | Fire Station                          | 500                  | -                      | Pumping data unavailable                              |
| Taneytown       | PW-8                                  | 2,000                | 8%                     |                                                       |
| Linion Bridge   | PW-1                                  | 1,000                | 24%                    |                                                       |
| Union Bhage     | PW-3                                  | 500                  | 18%                    | Not in use                                            |
| Westminster     | Koontz Creamery (stream augmentation) | 1,500                | -                      | Stream augmentation                                   |

# **Mitigation Options**

# **PFAS Treatment Options in Drinking Water**



## Mitigation alternatives



## Approach For Evaluating Management and Treatment Options



#### Step 1: Can WELL MANAGEMENT achieve PFAS Targets

- Use Mass Balance Model of the Well Supply System to define impacts of well operations on observed concentrations at the WTPs
- Study effect of shutting down wells, minimizing use of wells, paired well operation, etc.

## Approach For Evaluating Management and Treatment Options



#### Step 2: Understand impacts of WTP treatment on concentrations at WTP

- Is treatment at the WTPs capable of meeting PFAS targets?
  - PFOA, PFOS < 4 ppt (Draft MCL)
  - HI < 1

## Approach For Evaluating Management and Treatment Options



#### Step 3: Understand impacts of wellfield treatment on concentrations at WTP

• Is treatment at individual wells/wellfields capable of meeting PFAS targets?

# Currently Available Treatment Solutions to Address PFAS in Drinking Water

#### Even "Advanced" technologies comes up short sometimes



| Technology                             | Benefits                                                                                                                                                                           | Drawbacks                                                                                                                                                                                                                                         |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GAC                                    | <ul> <li>Proven PFOA/PFAS removal</li> <li>Removal of other chemicals<br/>(e.g., VOCs, EDCs, PPCPs)</li> <li>DBP precursor reduction</li> <li>Can be reactivated/reused</li> </ul> | <ul> <li>Carbon replacement costs can be<br/>costly especially for short chains</li> <li>Need to consider breakthrough time<br/>and regeneration cycles</li> <li>Spent Material Disposal concerns<br/>(RCRA)</li> </ul>                           |
| Ion Exchange                           | <ul> <li>Proven PFOA/PFAS removal</li> <li>May be more effective for<br/>removal of some short<br/>chain PFASs</li> </ul>                                                          | <ul> <li>Single use of resin cannot be regenerated</li> <li>Competing ions may affect performance or require pretreatment (TOC, Fe/Mn)</li> <li>Limited removal of other contaminants</li> <li>Spent Material Disposal concerns (RCRA)</li> </ul> |
| Reverse<br>Osmosis /<br>Nanofiltration | <ul> <li>Removal of most PFAS</li> <li>Removal of additional<br/>contaminants</li> <li>DBP precursor reduction</li> <li>Softening</li> </ul>                                       | <ul><li>Brine management</li><li>Costly compared to other options</li></ul>                                                                                                                                                                       |

## **PFAS Treatment Approaches**

|                               | Pros                                             | Cons                                                  |                 |
|-------------------------------|--------------------------------------------------|-------------------------------------------------------|-----------------|
| Adsorption                    | Ease of<br>Implementation,<br>Cost Effectiveness | Treatment<br>Effectiveness Varies<br>with WQ and PFAS |                 |
|                               |                                                  |                                                       | PFAS Separation |
| High<br>Pressure<br>Membranes | Removal of<br>Legacy & Next<br>Generation PFAS   | Cost and<br>Concentrate Disposal                      |                 |
| r <del>'</del> 'ı             |                                                  |                                                       |                 |
| PFAS<br>Destruction           | Complete<br>Mineralization of<br>PFAS            | Cost and Maturity                                     |                 |

## Summary of PFAS removals for various treatment processes

| Removal <10% | 6 Rem           | oval 10-90% | Remova       | al > 90%                          |         |         |         |         |                                            |           |      |   |
|--------------|-----------------|-------------|--------------|-----------------------------------|---------|---------|---------|---------|--------------------------------------------|-----------|------|---|
|              | M.W.<br>(g/mol) | AER         | COAG/<br>DAF | COAG/ FLOC/<br>SED/ G-or<br>M-FIL | ΑΙΧ     | GAC     | NF      | RO      | MnO4, O3, ClO2,<br>Cl2, CLM, UV,<br>UV-AOP | FPD       |      |   |
| PFBA         | 214             | Assumed     | Assumed      |                                   |         |         |         |         |                                            | UF        |      |   |
| PFPeA        | 264             |             |              |                                   |         |         |         |         |                                            | n n       |      |   |
| PFHxA        | 314             |             |              |                                   |         |         |         |         |                                            | CAC       | IV   |   |
| PFHpA        | 364             |             |              |                                   |         |         |         |         |                                            | GAC       | V IA |   |
| PFOA         | 414             |             |              |                                   |         |         |         |         |                                            |           |      | _ |
| PFNA         | 464             |             | Unknown      |                                   | Assumed | Assumed |         |         |                                            |           |      |   |
| PFDA         | 514             |             | Unknown      |                                   | Assumed | Assumed |         |         |                                            |           | HOO  |   |
| PFBS         | 300             |             |              |                                   |         |         |         |         |                                            |           |      | 6 |
| PFHxS        | 400             |             |              |                                   |         |         |         |         |                                            |           | Y LO |   |
| PFOS         | 500             |             |              |                                   |         |         |         |         |                                            |           |      |   |
| FOSA         | 499             | Unknown     | Unknown      |                                   | Unknown | Assumed | Unknown | Assumed | Unknown                                    | XOzone    | XAOP |   |
| N-MeFOSAA    | 571             | Assumed     | Unknown      |                                   | Assumed | Assumed | Assumed |         | Unknown                                    | J J Lonie |      |   |
| N-EtFOSAA    | 585             |             | Unknown      |                                   | Assumed | Assumed | Assumed |         | Unknown                                    |           |      |   |

Removal of PFAS from source waters depends on target, concentration, raw water quality and other variables (WaterRF 4322)

## **Benchmarking Treatment Conditions**

## **Adsorption Systems**

| Adsorbent | Adsorber<br>Configuration | EBCT<br>(Total, min) | Flow Rate<br>(MGD) | Spent Media Disposal         | Interest<br>Rate | Lifespan |
|-----------|---------------------------|----------------------|--------------------|------------------------------|------------------|----------|
| GAC       | Lead/Lag                  | 20                   | 1.5, 10            | Off-Site Regeneration        |                  |          |
| IX Resin  | Lead/Lag                  | 4                    | 1.5, 10            | Throwaway, Non-<br>Hazardous | 5%               | 30 years |

### **Membrane Systems**

| Membrane                                                                 | Flow Rate<br>(MGD) | Background<br>Water Quality | Flux<br>(gfd)        | Concentrate<br>Disposal | Interest<br>Rate | Lifespan |  |  |
|--------------------------------------------------------------------------|--------------------|-----------------------------|----------------------|-------------------------|------------------|----------|--|--|
| NE                                                                       | 15 10              | High/Low                    | 19 <sub>High</sub> / | Ocean                   |                  | 20 vooro |  |  |
|                                                                          | 1.5, 10            |                             | 17 <sub>Low</sub>    | Outfall/POTW            | <b>5</b> 0/      |          |  |  |
| RO                                                                       | 1.5, 10            | High/Low                    | 19 <sub>Hiah</sub> / | Ocean                   | 5%               | SU years |  |  |
|                                                                          |                    |                             | 17 <sub>Low</sub>    | Outfall/POTW            |                  |          |  |  |
| Constant flux operation contingent on background water quality selection |                    |                             |                      |                         |                  |          |  |  |



# **Determining Cost of Compliance**

## How to determine Cost of Compliance?



- Understand the potential impacts of regulatory action (which compounds, which technologies, residuals?)
- 2. Understand feasibility and viability of treatment technologies (ie., IX resin is not suitable for gravity contactors)
- 3. Cost of compliance is a function of capital and operating and maintenance costs
  - Capital costs are escalating rapidly
  - O&M is critically important to cost of compliance
  - Media and residuals disposal costs are in flux
- 4. How to pay for the upgrades?

## **Cost Modeling Strategy**

### Today



Class V Cost Curves available

Class IV Estimates take a little longer, and may immediately be obsolete

#### Tomorrow



O&M is a function of:

- Media replacement (IX, GAC)
- Pumping Costs
- Brine / media disposal

### **The Future**



The future can be impacted by:

- Short-chain PFAS regulations
- Cost Uncertainty
- Supply-chain issues
- Disposal of Media or Residuals



# **Cost of Adsorptive Treatment**

- IX and GAC cost curves look very similar.
- At changeout times exceeding 6 months, IX resin may become more cost effective.
- Cost curves can be adapted for a variety of operation conditions, adjustments of appropriate spent media disposal costs remains ongoing.

| Adsorbent | Adsorber Configuration | EBCT (Total, min) | Flow Rate (MGD) | Spent Media Disposal     |
|-----------|------------------------|-------------------|-----------------|--------------------------|
| GAC       | Lead/Lag               | 20                | 1.5             | Off-Site Regeneration    |
| IX resin  | Lead/Lag               | 4                 | 1.5             | Throwaway, Non-Hazardous |

## **Capital Cost Estimates Developed from Projects Around the Country**

#### **Today's Options**



GAC Cost Curve for PFAS projects

## **Additional Cost Modeling Tools to Expand capabilities**

Working towards tomorrow's

Water Research Foundation Project 4913: Investigation of Treatment Alternatives for Short-chain PFAS



## Work Breakdown Structure (WBS) Models Previously Developed by EPA

| STEP 5                                           |                                       |                                        |                                              | Resulting Costs (in year 2020 dollars, see OUTPUT sheet for details)                                             |
|--------------------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Result:                                          | s are ready (no need to click button) | General                                | to Recults                                   | Direct Capital Cost: \$4,431,280                                                                                 |
|                                                  |                                       | Genera                                 |                                              | Total Capital Cost: \$6,716,978                                                                                  |
|                                                  |                                       |                                        |                                              | Annualized Capital Cost: \$388,444 per year (over 30 years at 4%)                                                |
| MANUAL INPUTS                                    |                                       |                                        |                                              | Annual U&M Cost: \$557,912 per year                                                                              |
| Lells in gold are required; cer                  | lis in blue are optional              |                                        | [C 1                                         | Total Annualized Cost: \$346,356 per year (41% capital, 53% U&M)                                                 |
| De siene Eleve (in ale din a ber                 |                                       | 10.000                                 | Delect units                                 |                                                                                                                  |
| Design Flow Lincluding by                        | passi                                 | 10.000                                 | MGD                                          |                                                                                                                  |
| Average Flow (including b                        | Ear information:                      | 10.000                                 | MGD                                          |                                                                                                                  |
|                                                  | Treatment sustem design flow          | 10.000                                 | MOD                                          |                                                                                                                  |
|                                                  | Bunass design flow                    | 0.000                                  | MGD                                          | Current hunges percentage is $0^{12}$ . Go to Critical Design Assumptions (link below) to change this value      |
|                                                  | bypass designitiow                    | 0.000                                  | Sustem size inputs OK                        | Adjust bypass percentage is over. Oo to citical besign Hissuniptions (ink below) to change insivate.             |
|                                                  |                                       |                                        | System size inputs on                        | - High Dipass prioriting                                                                                         |
| 8-1                                              |                                       | carbon life value- bed                 | a station                                    | Guidance: Carbon life is best determined by pilot or RSSCT tests. Use theoretical calculation methods            |
| Select carbon lire input ty                      | ihe                                   | volumes                                | < pick one                                   | (e.g., Freundlich isotherms) only in the absence of such data for initial assessment of carbon life and          |
| Carbon life                                      |                                       | 300000                                 | bed volumes                                  | suitability of GAC for treatment.                                                                                |
| no additonal input requi                         | ired                                  |                                        | not required                                 | See Freundlich isotherm reference data                                                                           |
| no additonal input requi                         | ired                                  |                                        | not required                                 | See PEAS breakthrough reference data                                                                             |
| no additonal input requi                         | ired                                  |                                        | not required                                 |                                                                                                                  |
|                                                  | For information:                      |                                        |                                              | Important: carbon life calculation assumes bed volumes are based on EBCT per vessel                              |
|                                                  | Carbon Life                           | 69.5                                   | months at average flow                       | Carbon life reflects time between change outs of the lead vessel                                                 |
|                                                  |                                       |                                        | Carbon input OK                              | -                                                                                                                |
|                                                  |                                       |                                        |                                              |                                                                                                                  |
| Contaminant removal inpu                         | it type                               | EBCT                                   | < pick one                                   |                                                                                                                  |
| Total Theoretical Empty                          | Bed Contact Time (EBCT)               | 20                                     | minutes                                      | Guidance: EBCT is best determined by pilot tests, but may be calculated for radon if a steady state rate         |
| no additonal input requi                         | ired                                  |                                        | not required                                 | constant (Kss) is available. Use the theoretical calculation method for radon only in the absence of pilot       |
| no additonal input requi                         | ired                                  |                                        | not required                                 | data for initial assessment of EBCT and suitability of GAC for treatment.                                        |
| Minimum number of conta-<br>or series operation) | ctors in series (i.e., parallel       | 2                                      | < enter 1 for parallel, 2 or more for series | Consider multiple vessels in series for long EBCTs (>10 minutes)                                                 |
|                                                  | For information:                      |                                        |                                              | 1                                                                                                                |
|                                                  | EBCT                                  | . 20.0                                 | minutes at design flow                       |                                                                                                                  |
|                                                  | EBCT per contactor                    | 10.0                                   | minutes at design flow                       |                                                                                                                  |
|                                                  |                                       |                                        | Contaminant removal inputs OK                |                                                                                                                  |
|                                                  |                                       |                                        | · · · · · · · · · · · · · · · · · · ·        |                                                                                                                  |
| Pressure Vessels                                 |                                       |                                        |                                              |                                                                                                                  |
| The next four inputs may be en                   | tered manually, or calculated with Au | toSize button. All other gold inputs m | ist be complete before AutoSizing.           |                                                                                                                  |
| -                                                | Bed depth                             | 7                                      | teet                                         | Guidance: Typical pressure GAC bed depths are 2 to 8.5 ft.                                                       |
| Auto Size Pressure Vessels                       | Vessel geometry                       | upright                                | < pick one                                   | Buidance: Typically upright, although larger systems (e.g., greater than 2,000 gpm) might use horizontal vessels |
|                                                  | Height (straight)                     | 11                                     | feet                                         | Buildance: Typically up to 14 feet for upright vessels, 20 to 40 feet for horizontal vessels                     |
|                                                  | Diameter                              | 13                                     | feet                                         | Guidance: Typically 1.5 to 14 feet for upright vessels, 10 to 14 feet for horizontal vessels                     |
|                                                  | For information:                      | 10                                     |                                              |                                                                                                                  |
|                                                  | Number of treatment trains            | . 10                                   | trains                                       |                                                                                                                  |
|                                                  | Number of operating vessels           | . 20                                   | units                                        |                                                                                                                  |
| lot                                              | ai vesseis (inci, redundancy, below)  | 23                                     | units                                        | l                                                                                                                |

## **O&M** Costs are crucial to understanding viability of treatment technology

Today's cost estimates

• IX models produce accurate cost estimates. GAC estimates were lacking.



|   | Α                   | В                                | С                                                                  | D             | E              | F            | G         | Н                                    | I.                                | J          |
|---|---------------------|----------------------------------|--------------------------------------------------------------------|---------------|----------------|--------------|-----------|--------------------------------------|-----------------------------------|------------|
|   |                     | Instructions:                    | Please provide as much information as possible in the table below. |               |                |              |           |                                      |                                   |            |
| , |                     |                                  | Blue background data is critical for PFAS rating                   |               |                |              |           |                                      |                                   |            |
| 2 |                     |                                  | Green background data will be assumed ND for PEAS rating           |               |                |              |           |                                      |                                   |            |
|   |                     |                                  | Do not Modify the Sheet as it will create errors when processing   |               |                |              |           |                                      |                                   |            |
| + |                     | rev17Sep2021EB                   | DO HO                                                              | i widun y ti  | ie oneer a     | as it will c | reate ern | bis when pi                          | ocessing                          |            |
| 5 |                     |                                  |                                                                    |               |                |              |           |                                      |                                   |            |
| 7 |                     | Information Reques               | ested for PFAS Treatment                                           |               |                |              | Non-PFAS  | Ratings for BV based on resin volume |                                   |            |
| 3 |                     | Customer:                        |                                                                    |               | Date rated:    |              |           | treatment                            | in lead vessel with PFAS break as |            |
| 9 |                     | Project:                         |                                                                    |               | Sample:        |              |           | goals                                | indica                            | ited below |
|   |                     |                                  |                                                                    |               |                |              |           |                                      | PFAS Break                        | PFAS Break |
| 0 |                     | Description                      |                                                                    |               | Influent Water |              |           |                                      | I FAD Vessel at:                  | Vessel at: |
| 1 |                     | beschption                       |                                                                    | Units         | Min            | Avg          | Max       |                                      |                                   | Vesser de  |
| 2 |                     | Operational Flow Rate            |                                                                    | gpm           |                |              |           |                                      |                                   |            |
| 3 |                     | Operational Schedule             |                                                                    | hour/day      |                |              |           |                                      |                                   |            |
| 4 |                     | Daily Volume (average)           |                                                                    | Gallons       |                |              |           |                                      |                                   |            |
| 5 |                     | Sulfate                          |                                                                    | mg/L (ppm)    |                |              |           |                                      |                                   |            |
| 6 | $\rightarrow$       | Nitrate (as N)                   |                                                                    | mg/L as N     |                |              |           |                                      |                                   |            |
| 7 | $\rightarrow$       | Nitrate (as NO3)                 |                                                                    | mg/L as NO3   |                |              |           |                                      |                                   |            |
| 8 | $ \longrightarrow $ | Alkalinity (as CaCO3)            |                                                                    | mg/L as CaCO3 |                |              |           |                                      |                                   |            |
| 9 | $\rightarrow$       | Chloride                         |                                                                    | mg/L (ppm)    |                |              |           |                                      |                                   |            |
| 0 |                     | Fluoride                         |                                                                    | mg/L (ppm)    |                |              |           |                                      |                                   |            |
| 1 |                     | Perchlorate                      |                                                                    | μg/L (ppb)    |                |              |           | (e.g. < 4 ppb)                       |                                   |            |
| 2 |                     | Arsenate (As (V))                |                                                                    | µg/L (ppb)    |                |              |           |                                      |                                   |            |
| 3 |                     | Hexavalent chromium (chromate) C | r(VI)                                                              | µg/L (ppb)    |                |              |           |                                      |                                   |            |
| 4 |                     | Uranium                          |                                                                    | µg/L (ppb)    |                |              |           |                                      |                                   |            |
| 5 |                     | Calcium (as CaCO3)               |                                                                    | mg/L as CaCO3 |                |              |           |                                      |                                   |            |
| 6 |                     | Magnesium (as CaCO3)             |                                                                    | mg/L as CaCO3 |                |              |           |                                      |                                   |            |
| 7 |                     | Sodium                           |                                                                    | mg/L (ppm)    |                |              |           |                                      |                                   |            |
| 8 |                     | Potassium                        |                                                                    | mg/L (ppm)    |                |              |           |                                      |                                   |            |
| 9 |                     | Iron                             |                                                                    | mg/L (ppm)    |                |              |           |                                      |                                   |            |
| n |                     | Мардаресе                        |                                                                    | mg/L (ppm)    |                |              |           |                                      |                                   |            |

# **PFAS Spent Adsorbent Disposal**

**Costs and Availability Changing Rapidly** 



Landfilling:

Subtitle D \$50-\$100 per ton Subtitle C \$300-\$500 per ton

Incineration: MSW Incinerator \$200-\$300 per ton HW Incinerator \$1,200+ per ton

Electrochemical Oxidation, Super Critical Water Oxidation, Plasma, Hydrothermal Liquefaction, Others Costs not well developed

## Case Study – Peoples Water in Florida - ~1.5 MGD Well



Figure 5-1: Proposed Well 5 GAC Process Flow Diagram

#### Table 5-2: Hazen and Calgon Projected GAC Replacement

| Goal                            | Bed Volume to PFAS<br>Breakthrough | GAC Changeout Frequency* |  |  |
|---------------------------------|------------------------------------|--------------------------|--|--|
| Calgon carbon Corporation Model | 105,000                            | 1.9 years                |  |  |
| Hazen GAC Model                 | 83,000                             | 1.5 years                |  |  |

\*: Changeout frequency is assumed to be based on continuous operation of Well 5 at 1,000 gpm.



Figure 5-2: Well 5 Estimated Site Layout for GAC

# Case Study – Peoples Water in Florida - ~1.5 MGD Well

#### Table 5-3: GAC Capital Cost Estimate

| Description                             | Cost        |  |  |
|-----------------------------------------|-------------|--|--|
| General Conditions                      | \$126,000   |  |  |
| Civil/Site Work                         | \$150,000   |  |  |
| Mechanical*                             | \$750,000   |  |  |
| GAC Vessels                             | \$600,000   |  |  |
| GAC Media                               | \$150,000   |  |  |
| Structural                              | \$150,000   |  |  |
| Architectural                           | NA          |  |  |
| HVAC/Plumbing                           | NA          |  |  |
| Electrical                              | \$105,000   |  |  |
| Instrumentation & Controls              | \$105,000   |  |  |
| Subtotal                                | \$1,386,000 |  |  |
| Design Contingency (30%)                | \$416,000   |  |  |
| Contractor Overhead, Profit & Fee (25%) | \$347,000   |  |  |
| Escalation (at 3%-5% Annually)          | \$69,000    |  |  |
| Bond and Insurance (3%)                 | \$42,000    |  |  |
| TOTAL                                   | \$2,260,000 |  |  |



#### Figure 5-3: Hazen Predicted PWSC Well 5 GAC PFAS Breakthrough Versus Bed Volumes Processed.

#### Table 5-6: Calgon GAC Cost Comparison with Purolite AdEdge IX System

| Cost Metric                              | G/<br>(Sectio                 | AC<br>on 5.1) | IX<br>(Section 5.2) |                |  |
|------------------------------------------|-------------------------------|---------------|---------------------|----------------|--|
|                                          | Low Estimate High Estimate    |               | Low Estimate        | High Estimate  |  |
| Capital Cost                             | \$2,26                        | 0,000         | \$2,281,200         |                |  |
| Annual O&M                               | \$8,784.84                    | \$109,836.49  | \$15,523.12         | \$153,419.61   |  |
| Cost Per<br>Gallon(per 1,000<br>gallons) | \$0.                          | 21            | \$0.                | 29             |  |
| Net Present Value                        | \$2,390,696.19 \$3,894,089.63 |               | \$2,512,144.88      | \$4,563,696.38 |  |

\*: 3% escalation, annualized over 20 years

\*: Summation of GAC Vessels and GAC Media

